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ABSTRACT
The importance of the traffic modeling in the field of commu-
nication became crucial for the optimization of the network
resources used in the communication as the quality of service
became the bottleneck in the early design of an architec-
ture. In this paper we analyze different parameters for the
quality of service by the multicore architecture using the
synthetic generated traces for the multimedia applications.
The parameters calculated for the multicore architectures
with the help of the synthetic self-similar traces helps the
designer to choose the optimal resources in the early design
process due to the flexibility nature of the traces which is
not possible with the real-time applications. The packet
loss probability is calculated for different traffic patterns for
different architecture against buffer sizes for different traffic
patterns.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms
Performance

Keywords
Self-similarity, Traffic patterns, Loss-Probability

1. INTRODUCTION
Nowadays, the multicore architectures are used as systems
for high performance and thus multicore system shows an
increase in the number of processing elements. According to
the International Technology Roadmap for Semiconductors
(ITRS) 2013, the term More Than Moore has coined to
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Figure 1: (a) Fractal plant (b) Hilbert curve (c) Sierpinski
triangle (d) Koch curve

the fact of scaling, integration of heterogeneous new func-
tionalities into smart systems became a driving factor for
the technology. This trend, diversification in conjunction
with miniaturization, led to an increasing complexity in the
multicore process estimating more than 1300 core elements[5].
For example, there exists a 1200 cores platform for the pro-
tein folding computation [18]. And therefore, the need of
bus-based communication has been replaced by parallelism
decreasing the power and latency and thereby increasing the
throughput. But, it opens many challenges before the de-
signer i.e. for instance the use of optimal network resources.
For the better understanding of the system the application
based simulation is necessary, the challenge of using the ap-
plication is that they are not flexible and consumes a lot of



time for computation and if traces is used with shorter the
length of original trace will fast the simulation and therefore
the requirement of traffic modeling comes into light.

Traffic modeling is an important aspect where the optimal
use of the resources used in the communication to guarantee
the quality of service. During the early years of traditional
communication where the number of calls can be represented
as the Poisson process where the duration of traffic packet
arrivals as exponential variable. But as the greater com-
plexity is added in the communication such as multimedia
traffic, which are bursty in nature, modeling of the traffic
not only shows the trend of arrivals and numbers but also
the variation of bandwidth during communication.

In [4] traffic modeling is done for the multimedia application
using the adaptable neural-network architecture, which uses
the recursive weight estimation for adapting the network
with the original conditions. The first method of self-similar
traffic modeling is found in [17] where the self similar traffic is
generated for the Ethernet LAN. In [15] the self-similar traffic
for the multimedia application for the multicore architecture
is generated and the loss probability is calculated considering
the infinite buffer system.

In [6] for the finite buffer system, the impact of the arrival
process on the loss of the correlation becomes negligible
as across the time scale. This paper shows the selection
of traffic models such as Markovian or Self-similar under
the assumption of correlation horizon. They also find that
packet loss is dependent on the arrival rates of the packet.
In [12] shows the limitations of ordinary resource allocation
procedures due to the presence of self-similar traffic. In [13]
the stochastic model used to compute the probabilities for
real time allocation of single buffer, and energy saved from
the inactive routers, and expected delay in multicore system.

In [1] the limitations of queueing theory and Markov chain
methodology to predict the size of the buffer solved by using
the characteristics of power-law distribution, the network
flow exhibit the scaling and correlation properties, by the
presence of energy level and parameter of packet injection
rate the origin of self-similarity or long-range dependency
can be inferred in NoC traffic.

In [2] presented a new method to capture the non-stationary
and multifractal effects on the traffic of NoC, the impact of
the packet injection rate over the overflow probability and
latencies between node-to-node is calculated.

In this paper, we discuss the impact of self-similar traffic
on the different traffic patterns for different architectures.
The self-similar traffic is generated using the statistical prop-
erties of the multimedia applications [9] which shows the
properties of burstiness. The autocorrelation function for the
generated traffic will not be summable. The autocorrelation
function decays so slowly that any limit of aggregation will
not eliminate the autocovariance from the process. The sum
of autocorrelation function is shown in eqn. 1 as

∞∑
−∞

r(k) =∞ (1)

where r(k) is the autocorrelation function with k number
of lags. The process showing this dependency also known
as Long Range Dependence process (LRD). If in the process
autocorrelation function is summable then this dependency
is known as Short Range Dependence process (SRD).

According to [9], traffic modeling simulation and different
benchmarking [14] in order to evaluate a NoC behavior and
performance at an early stage in the design process. However,
NoC performance estimation in the early design is highly de-
pendent on the type of traffic patterns. Therefore, the traffic
selection to present the similarities as for real applications,
it is supposed to underline.

We have searched three different classes of traffic patterns [11]
i.e. real application traffic patterns, synthetic traffic models
& the last one extracts the statistical characteristics from
real application for generating more simpler traffic models
than the original application traffics.

2. SELF-SIMILARITY
Self-similarity [10] refers to the same characteristics shown at
all the distribution at all possible scales. Different examples
showing the self-similar are shown in Fig. 1, where four
figures of Fractal plant, Hilbert curve, Sierpinski triangle
and Koch curve [7] showing the self-similar fractals at the
finer details of scaling where the finer details shows the same
properties from which it is originated and this process is
iterated recursively, then it will give the final system of its
origin. In terms of traffic this would be analogous to 100ms
network bins is aggregated into the 100s network bins and
this 100s network bins is aggregated into 100min. network
bins. So this is not similar to a Poisson process as the
distribution increases which will smooth giving the flat line,
i.e. no place for burstiness, whereas if the burstiness shown
at the finer level, then the burstiness will appear in the whole
distribution and thus it is the good method to model the
multimedia applications.

The mathematical representation of the long-range depen-
dence as: let L = (Lt: t = 0,1,2,. . . ) be a stationary stochas-
tic process with mean q, and variance σ2 and autocorrelation
function AC(k), k ≥ 0. L is said to be long-range dependence
if

AC (k) ∼ k−βL1 (t) as k → ∞ (2)

where 0 < β < 1, L1(t) is a slowly varying function, that is,
limt→∞ L1(tw)/L1(t) = 1, for all w > 0 and ∼ denotes the
condition of asymptotically close.

Self-similar processes are measured by the Hurst parameter
(H) which ranges from 0 < H < 1. Consider a traffic volume

process S(t) at the t-th time, its aggregated process S(m) of
S at aggregation level m,

S(m)(j) =
1

m

mj∑
m(j−1)+1

S(t) (3)

S(m) = mH−1S (4)

S = m1−HS(m) (5)



The S(t) is partitioned into a nonoverlapping blocks of size
m, where number of blocks is denoted by j and their values
are averaged over these blocks. Let φ(m)(k) denotes the

autocovariance function for the process S(m).

Definition 2.1. (Second-Order Stationarity) A pro-
cess is said to be second-order stationary if its autocovariance
function (φ(a, b) = E[(S(t)− a)(S(t)− b)]) is translation in-
variance i.e.,

φ(a, b) = φ(a+ k, b+ k), (6)

where a, b, k ε Z.

Definition 2.2. (Second-Order Self-Similarity) A pro-
cess is said to be second-order self-similar if its autocovariance
function satisfies,

φ(k) =
σ2

2

(
(k − 1)2H − 2(k)2H + (k + 1)2H

)
(7)

and it is said to be asymptotically second-order self-similar
if,

lim
m→∞

φ(m)(k) =
σ2

2

(
(k − 1)2H − 2(k)2H + (k + 1)2H

)
,

(8)
where k ≥ 1 and 0.5 ≤ H ≤ 1

By the definition of the Second-order stationary we arrived
to the definition of Second-order self-similar. Second-order
self-similar is an important property for the network traffic
modeling whether it is exact synthesis or asymptotic.

Consider the cumulative process I(t) of the aggregated pro-
cess S(t) such that S(t) = I(t) − I(t − 1) which is itself a
self-similar process.

I(t) = c−HI(ct) (9)

where c is the contraction factor which can dilate or stretch
according to its value if c < 1 and c > 1 respectively, I(ct)
is the time scaled version of I(t), and both follows the same
distribution.

I(t) = tHI(1) (10)

So variance of the aggregated Sm is derivable as,

var
(
S(m)

)
= m2H−2σ2. (11)

So I(t) is said to be fractional brownian motion (FBM)
whereas its cumulative process is called fractional gaussian
motion (FGN) which is an important ingredient for traffic
modeling.

3. TRAFFIC PATTERNS
The performance of the system is evaluated on the three
traffic patterns to understand messages spatial distribution
using metrics such as end-to-end latency, hop count etc.. In
the uniform traffic [3] the destination node is calculated by
adding the random number to its source id. The random

(a) (b)

Figure 2: (a) 4× 4 Mesh Topology (b) 8× 8 Mesh Topology
by OMNET++

number is generated using the uniform distribution ranges
from 1 to n− 1, where n is the size of the topology.

di = (si + intuniform(1, (dn/2e − 1))) mod n (12)

where di & si are the destination id and source id respectively,
intuniform is a function which returns integer number from
the uniform distribution generated from 1 to n − 1. In
uniform traffic the source most likely to send equally to
each destination, it balances the load that has a very low
load balancing. In tornado traffic [3] is the fixed source-
destination pair where the source id is added with half of
the size of the network.

di = si + (dn/2e − 1) mod n (13)

In the complement traffic [3] is another fixed source-destination
pair in which the destination id depends on the id of the
source id.

di = ¬ si mod n (14)

The destination id is the negation of the source id. All these
three network patterns will not give the same source and
destination, i.e. the core which is generating the packets
will not send back to its own address. This is the reason
behind for choosing these three traffics since in the multicore
architecture the core will not send the packets to itself. The
different cores have different functions to perform so after
processing, the intermediate results are transferred to other
cores. For example, in the multimedia application processing,
the encoding, the decoding functions and the shared functions
are assigned to different cores of the architecture by using
some optimized mapping algorithm. These cores perform
the functions and communicate to other cores for complete
processing of the applications. Hence we have taken these
three traffic patterns to measure the performance of the
synthetic traces on the multicore architecture.
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Figure 3: Average Hop distance for 4× 4 Mesh network for the traffic (a) Complement (b) Tornado (c) Uniform
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Figure 4: Average hop distance for 8× 8 Mesh network for the traffic (a) Complement (b) Tornado (c) Uniform

4. RESULTS
For the performance we have taken two instances of Mesh
topology one is 4 × 4 (see Fig. 2a) and the other is 8 × 8
(see Fig. 2b) network. The platform for the simulation is
done on the OMNET++ [16] where the parameters used
for simulation is shown in Table 1. For changing the buffer
size, the change is done in the maximum number of queued
packets, where 8, 16, & 32 are assigned for 256, 512 & 1024
bytes buffer sizes respectively.

The analytical overflow probability of the packets is calcu-
lated using well-known Empty Buffer Approximation (EBA)
method which model queueing systems with traffic flows
which can help in making the performance modeling problem
tractable [8].

P{Qk > x} ≈ e−
1
2
Uk(tk)

4

√
2Π
(

1 +
√
Uk (tk)

)2 , (15)

where

Uk (tk) =
(−x+ (ck −mk) t)2

ak ∗mk ∗ t2H

Parameters Value

No. of Virtual Channel (VC) 2
Flit Size 4 bytes

Start time 1ns
Message Length 4 pkts
Packet Length 8 flits

Flit arrival delay 2ns
Flits per VC 1
Arbitration false

Routing XY routing
Simulation duration 2µs

Table 1: Parameters for Simulation

The ck is the service capacity whereas mk is the mean arrival
rates of the services, x denotes the buffer size, ak is the
variance of the cumulative series process, H is the hurst
parameter & tk denotes the cumulative time of traffic flows
at time t. In Fig. 7 the analytical overflow probability is
plotted against the buffer size using the eqn. 15.
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Figure 5: Average End-to-End latency for different traffic for 4× 4 Mesh network for buffer size (a) 256 (b) 512 (c) 1024
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Figure 6: Average End-to-End latency for different traffic for 8× 8 Mesh network for buffer size (a) 256 (b) 512 (c) 1024

Figure 7: Analytical Buffer-Loss Probability for 4× 4 Mesh
network

In the Fig. 3 & 4, the average hop distances is plotted for
each core, the plot shows similar pattern of variation of the
distance in both architectures for similar traffic patterns. For
4 × 4 mesh topology the maximum average hop count for
Uniform traffic is 10 for the core-id 7, whereas the maximum

average hop count for Tornado traffic & Complement traffic
is 15 for the core-ids 1 & 8 respectively, and for 8× 8 mesh
topology the maximum average hop count for Uniform traffic
is 45 for the core-id 7, whereas the maximum average hop
count for Tornado traffic & Complement traffic is 63 for the
core-ids 1 & 32 respectively.

The average end-to-end latency is plotted for both the ar-
chitecture for all three traffic in the Fig. 5 and 6. The
end-to-end latency is the time taken by the packet from
source to destination. In all three different buffer sizes, the
pattern of latency is quite similar for each traffic pattern.
The simulation is done on three buffer sizes of 256, 512 &
1024 bytes on the three traffic pattern on Uniform traffic,
Tornado traffic & Complement traffic.

ψend−to−end = N [ψtrns + ψproce + ψpropag + ψqueue] ,
(16)

where ψtrns is the transmission delay, ψproce is the process-
ing delay, ψpropag is the propagation delay, ψqueue queuing
delay & N is the number of link, which is nothing but
number of routers. The latencies for different traffic shows
that the complement traffic shows higher latency and varying
because the variation of the source-destination pair, whereas
the latency for tornado traffic is quite smooth and varying pa-
rameter quite small, the variability of the source-destination
pair is small and hence the latency is low, whereas for the
Uniform traffic shows hip-hop variation not as like in the
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Figure 8: Average Buffer-Loss Probability for different traffic for (a) 4× 4 Mesh network (b) 8× 8 Mesh network

complement traffic.

The average buffer-loss probability is plotted in Fig. 8 for
both architecture against the buffer sizes. The buffer-loss
probability is the number of packets lost to total number of
packets generated. In both the plot loss-probability decreas-
ing as the size of the buffer is increased showing the inverse
relation between the buffer size and the loss probability. As
from the figure it is seen that the packet loss is higher in the
8×8 mesh topology than the 4×4 mesh topology. The one of
the factor which decides the nature of loss is latency in given
in Eq. 16, whereas hop distance also decides the latency, if
the hop distance is greater for a core than its latency will be
higher.

In Fig. 8 initially the hop distance is greater for both ar-
chitectures hence for the Complement traffic is higher, for
Uniform traffic shows different characteristics in both the
plot i.e. in Fig. 8(a) the Uniform traffic has a higher loss
probability as compared to Tornado traffic whereas in Fig.
8(b) it is reversed. The explanation for this behavior is the
hop distance as in the Figs. 3 & 4, since Uniform traffic is a
random traffic its maximum hop distance shows at core-id 7
(i.e. at the middle) whereas for 8× 8 it shows at core-id 7
(i.e. at the first quarter).

5. CONCLUSION
We have presented the comparison of hop distances, end-to-
end delay and packet loss probability for the three traffic
patterns Uniform traffic, Tornado traffic & Complement
traffic for two architectures of mesh topology of 4 × 4 &
8× 8. Our simulation on the multicore architecture based on
the self-similar traces for multimedia applications generated
synthetically using the statistical properties of video applica-
tions. The flexible nature of synthetic generated trace helps
in the fast and accurate simulation, which is not possible
with real time applications.

The parameters calculated above helps in the early design of
architecture and the choice of optimal selection of optimal
communication resources. The loss probability shows the na-
ture of buffer under different network pattern circumstances
of different architecture and the optimal selection of resources
makes the design saves energy by no dropping of packets and
efficient architecture by saving extra area taken by unused
buffer.
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